
الگوریتم بهینهسازی خرگوش مصنوعی(Artificial rabbits optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2022 در ژورنال معتبر Engineering Applications of Artificial Intelligence از انتشارات الزویر چاپ شده است. در این تحقیق، الگوریتم بهینهسازی خرگوش مصنوعی برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده الگوریتم بهینهسازی خرگوش مصنوعی با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم کلونی زنبور مصنوعی (artificial bee colony)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی خرگوش مصنوعی در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.

الگوریتم بهینهسازی جستجوی گذرا(Transient search optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2020 در ژورنال معتبر Applied Intelligence از انتشارات اشپرینگر چاپ شده است. این الگوریتم برگرفته از جریان الکتریکی مدارهای برق است. در این تحقیق، الگوریتم بهینهسازی جستجوی گذرا برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده الگوریتم بهینهسازی جستجوی گذرا با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم بهینهسازی نهنگ (Whale Optimization Algorithm)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی جستجوی گذرا در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.

طرح درس و روش تدریس ریاضی پنجم درس جمع آوری و نمایش دادهها در قالب ورد و شامل 5 صفحه.
در درس مذکور روشهای جمع آوری دادهها و روشهای نمایش دادهها به کمک مثالهای مختلف مرور شدهاند. در مواردی هم به مصادیق استفاده از یک مورد به طور مستقیم پرداخته شده است.
درس را با ارائه مثالهایی از آمار و کاربردهای آن در زندگی روزمره شروع کنید. مثلا آمار دانش آموزان هر کلاس در مدرسه و لزوم آن برای برنامه ریزیهایی که در طول سال تحصیلی انجام میشود.
با توجه به اینکه این درس بیشتر به یادآوری و جمع بندی مطالب سالهای گذشته میپردازد، از دانش آموزان بخواهید در گروههای کوچک قرار بگیرند و به انجام فعالیت اوّل بپردازند. هدف این فعالیت مرور جدول دادهها، نمودار ستونی و دایرهای است.
اهداف درس:
✅ آشنایی با برخی روشهای جمع آوری داده ها
✅ کسب توانایی در استفاده از روشهای مناسب نمایش داده ها
✅ درک خصوصیات و کاربرد هر نمودار
✅ انتخاب نمودار مناسب در موارد مختلف
✅ توانایی استخراج دادهها از روی نمودارهای مختلف

الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی(Artificial ecosystem-based optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2020 در ژورنال معتبر Neural Computing and Applications از انتشارات اشپرینگر چاپ شده است. در این تحقیق، الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم کلونی زنبور مصنوعی(Artificial bee colony)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی مبتنی بر اکوسیستم مصنوعی در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.

الگوریتم بهینهسازی غذایابی سفره ماهی(Manta ray foraging optimization) یکی از الگوریتمهای فراابتکاری است که در سال 2020 در ژورنال معتبر Engineering Applications of Artificial Intelligence از انتشارات الزویر چاپ شده است. در این تحقیق، الگوریتم بهینهسازی غذایابی سفره ماهی برروی 23 تابع استاندارد در محیط متلب 2018 تست شده است. در شبیهسازی پیوست شده، الگوریتم بهینهسازی غذایابی سفره ماهی با الگوریتم بهینهسازی اجتماع ذرات(Particle swarm optimization)، الگوریتم جستجوی گرانشی(Gravitational Search Algorithm)، الگوریتم کلونی زنبور مصنوعی(Artificial bee colony)، الگوریتم تکامل تفاضلی(Differential Evolution) مقایسه شده است. نتایج تجربی این شبیهسازی نشان میدهد که الگوریتم بهینهسازی غذایابی سفره ماهی در مقایسه با الگوریتمهای ذکر شده، یک بهینهساز با عملکرد بالا است.